
RISC‐V Scalar Crypto
Markku‐Juhani O. Saarinen Ben Marshall
PQShield Ltd., Oxford, UK University of Bristol, UK

mjos@pqshield.com ben.marshall@bristol.ac.uk

RWC 2021 – Real World Cryptography Symposium, 13 Jan 2021

Slide 1/11

RISC‐V: Open Source ISA

RISC‐V is a free and open Instruction Set Architecture (ISA), whose development is
organized by RISC‐V International (https://riscv.org/). Industrial and academic
support is very broad1; Silicon and IP cores are available from multiple vendors, etc.

1With the notable exception of Intel® and ARM®, owners of proprietary ISAs ! Slide 2/11

https://riscv.org/

The K extension (from κρυπτός)

Anyone can create custom (“X”) ISA extensions for RISC‐V; but for interoperability
(compilers, kernel, ..) we need standard extensions. Krypto is proposed as “K” / Zk.

Scalar RV32/RV64 first, Vector later

RV32K: Lightweight 32‐bit microcontroller / security controller cryptography.
(Comparable to ARMv7/M, Xtensa. Example: ESP32‐C3 MCU has an RV32IMC).
RV64K: General‐purpose 64‐bit “application” processors, often running Linux.
(Comparable to AMD64/Intel, ARMv8/A. Example: PolarFire SoC has an RV64GC).
RVVK: RISC‐V Vector architecture. RVV resembles ARM’s new Scalable Vector
Extension (SVE) more than SIMD extensions like NEON or Intel’s AVX2/512.

RISC‐V is popular in embedded / IoT, which needs crypto, but may not have vector.

In 2019 it was decided to add “scalar” (non‐vector) crypto as well; only ISA with it!

Slide 3/11

Cryptographic Extensions Task Group (CETG)

Look under the releases tab at: https://github.com/riscv/riscv-crypto

Scalar Crypto is in Opcode and Consistency Review; Stable/Freeze in Q1/2021.
Slide 4/11

https://github.com/riscv/riscv-crypto

Lots of Quantitive Considerations

Problem: How to keep the crypto extension generally useful?

Solution: Require a subset of Bitmanip (“B” extension) instructions.

Rotations! (Not part of base RV32I/RV64I) – for SHA3, ChaCha, LWC.
Carryless multiply for GCM (and binary fields; e.g. code‐based crypto).
Specific uses for grev (byte & bit reversal), andn (SHA3), shfli/unshfli, etc.

Special instructions only for standard things that need them the most:

“NIST Suite” (Zkn): AES, SHA2 and “ShangMi Suite” (Zks): SM4, SM3.
Entropy Source (Zkr) for 800‐90B (FIPS 140‐3) and AIS‐31 (CC) RNGs.
RISC; Test things in microbenchmarks, compilers, do instruction counts, etc.
(Design rationale is open, published as academic research – but industry‐driven.)

Slide 5/11

Ultra‐Lightweight AES (and SM4) for RV32

RV32: T‐Tables in hardware approach – requires only one SBox.

rs1[31:0]
(rs1=rt)

rs2[31:0]

≫ mux bs

S fn

lin. expand fn

≪ rotate bs

rd[31:0] (rd=rt as well)

aes32esmi rt, rs2, bs // rt=rd=rs1
aes32esi rt, rs2, bs // Last rd.
aes32dsmi rt, rs2, bs // Decrypt
aes32dsi rt, rs2, bs // Last rd.
sm4ks rt, rs2, bs // SM4 key
sm4ed rt, rs2, bs // Enc & Dec

“Destructive” rt=rd=rs1 encoding.
16 cycles per rd. + key load (4×ld).
≈ 5× faster than tables + XORs.
Constant time≫ bitsliced speed.
1K..2K NAND2 Gates. (AES = LWC!)
Same data path can be used for SM4.

Slide 6/11

Faster, still Lightweight AES for RV64

RV64: Use wider registers to process 128‐bit block over two instructions.

Six instructions per AES round:
AddRoundKey: 2× ld, 2× xor
2× aes64esm or aes64dsm / decrypt.
Final round: 2× aes64es or aes64ds.

Engineering options:
1 SBox Instance (Small, 8‐cycles)
8 SBox Instances (Fast, 1‐cycle)
≈ 8K GE for single‐cycle variant
≈ 6K GE for 2‐cycle variant.

// Encrypt Round
aes64es rd, rs1, rs2
aes64esm rd, rs1, rs2

// Decrypt Round
aes64ds rd, rs1, rs2
aes64dsm rd, rs1, rs2

// Key Schedule
aes64ks1i rd, rs1, rcon
aes64ks2 rd, rs1, rs2
aes64imix rd, rs1

(For more on RISC‐V AES, see our CHES 2021 paper: https://ia.cr/2020/930)
Slide 7/11

https://ia.cr/2020/930

Lightweight SHA2 Support

Directly map onto “sigma” and
“sum” functions of FIPS 180‐4.

Number of instructions:
RV32: 4 / SHA256, 6 / SHA512
RV64: 4 / SHA256, 4 / SHA512
Very Cheap:
Just XORs & shifts / rotations.

2× Performance, 0.5× code size.

SM3 has a similar 32‐bit data path
to SHA2‐256. Instructions sm3p0
and sm3p1 offer some speed‐up.

sha256sig0 rd, rs1 // RV32 & RV64
sha256sig1 rd, rs1 // (both)
sha256sum0 rd, rs1
sha256sum1 rd, rs1

sha512sig0 rd, rs1 // RV64
sha512sig1 rd, rs1 // (only)
sha512sum0 rd, rs1
sha512sum1 rd, rs1

sha512sig0h rd, rs1, rs2 // RV32
sha512sig0l rd, rs1, rs2 // (only)
sha512sig1h rd, rs1, rs2
sha512sig1l rd, rs1, rs2
sha512sum0r rd, rs1, rs2
sha512sum1r rd, rs1, rs2

Slide 8/11

(On‐Chip) Entropy Source Interface

Noise Source

“analog” shot, quantum, ..

Sampling

raw bits

Conditioning

pre‐proc. H(X) > 8

Health
Tests

OK?PollEntropyISA

H
ar
dw

ar
e:

En
tr
op

y
So
ur
ce

(E
S)

So
ft
w
ar
e:

D
riv

er
+
D
RB

G
(s)

(ES16) seed
Not OK:

(BIST / WAIT / DEAD)

Entropy Pool

Processed “full entropy”

Crypto DRBG

Library API Kernel syscall

Application

ISA defines an (AIS‐31 PTG.2 or SP 800‐90B)
“Entropy Source”, not a “black box RNG.”
We already have AES and hash instructions;
these can be used to generate DRBG output
– once initialized with a sufficient entropy.
We’ve consulted with certification labs, also
BSI and NIST directly about requirements.

pollentropy rd // Poll randomness
getnoise rd // Testing interface

Polls atomically some entropy (ES16) or a status:
BIST / WAIT / DEAD. Use of raw (certification) test
override getnoise disables pollentropy.

Slide 9/11

10 minutes is up. But how do I ..

.. do RSA and ECC arithmetic? I do it with Redundant Binary Representation (RBR).
RISC‐V still has no carry flag – but RBR is constant time, allows easier vectorization.

.. do Camellia, Aria, Magma, Kuznyechik? Instruction xperm.b helps with constant
time S‐Boxes. It’s also useful for masking‐based side‐channel countermeasures.

.. do constant time? Use crypto extensions, avoid table lookups, branches. Krypto
defines encoding rules for constant‐time multiply. A compiler flag should activate it.

.. show “non‐invasive” security? With an oscilloscope or leakage model (emulator).
These depend on physical RISC‐V implementation, not within the scope of ISA.

.. do post‐quantum cryptography? I’ve tested all NIST PQC finalists on RISC‐V.
No big surprises about performance or suitability; they’re fine. Good SHA3 helps.
(However, RISC‐V offers unique options for hardware security and acceleration.)

Slide 10/11

Thank You! Q&A To follow.

https://github.com/riscv/riscv-crypto

B. Marshall, G. R. Newell, D. Page, M.‐J. Saarinen, C. Wolf:
“The design of scalar AES Instruction Set Extensions for RISC‐V.” – ia.cr/2020/930
(T)CHES 2021: https://doi.org/10.46586/tches.v2021.i1.109-136

M.‐J. Saarinen, G. R. Newell, B. Marshall:
“Building a Modern TRNG: An Entropy Source Interface for RISC‐V.” – ia.cr/2020/866
Proc. ASHES ’20: https://doi.org/10.1145/3411504.3421212

Slide 11/11

https://github.com/riscv/riscv-crypto
ia.cr/2020/930
https://doi.org/10.46586/tches.v2021.i1.109-136
ia.cr/2020/866
https://doi.org/10.1145/3411504.3421212

