
Think openly, build securely

 Post-Quantum Crypto 
Side-Channel Tests 

(and a CSP Walk-Through)

Staff Cryptography Architect, PQShield Ltd.

Dr. Markku-Juhani O. Saarinen 

© 2022 PQShield Ltd. PUBLIC

 

International Cryptographic Module Conference
September 15, 2022 - Washington DC 

1



© 2022 PQShield Ltd. PUBLIC

Outline
Post-Quantum Crypto Security Engineering & Validation

Note: This is a large slideset; I will be be skimming over some parts.

1. Motivation: NIST PQC and “Non-Invasive” in FIPS 140-3.

2. CRYSTALS-Kyber: Key Establishment.

3. CRYSTALS-Dilithium: Signatures.

4. ISO 17825 / “FIPS 140-3” TVLA in Side-Channel Testing of PQC.

2



© 2022 PQShield Ltd. PUBLIC

Motivation: NIST PQC Means FIPS 140-3 PQC
Post-Quantum Crypto transition is driven by NIST/FIPS

NIST/FIPS Post-Quantum Crypto: Selection July 2022, Standards 2024. 

Replacement for ECC, RSA key establishment and ECDSA, RSA signatures.

Especially for U.S. Government Entities:

- Active transition effort expected (presidential directives NSM-08, NSM-10).
- Regulations mandate FIPS 140-3 cryptography -> also for PQC modules.

3



© 2022 PQShield Ltd. PUBLIC

Motivation: (Sept 2022) CNSA 2.0 / NIAP
Transition 2025-2030-2035:
“Note that this will effectively 
deprecate [in NSS] the use of RSA, 
Diffie-Hellman (DH), and elliptic 
curve cryptography (ECDH and 
ECDSA) when mandated.”

4



© 2022 PQShield Ltd. PUBLIC

Motivation: FIPS 140-3 Non-Invasive Security
Requires Side-Channel Mitigations at High Security Levels 

Introduced as a major change in FIPS 140-3 in relation to FIPS 140-2:

- Side-Channel Attacks (Power, Emissions, Timing) are in 140-3 scope. 
- Documentation required for Levels 1 and 2. Mitigation Testing at Levels 3 and 4.

5



© 2022 PQShield Ltd. PUBLIC

What are the CSPs, PSPs, SSPs of PQCs !
Designer classifies all variables and wires into CSPs and PSPs

Critical Security Parameter (CSP) requires require both confidentiality (secrecy) 
and integrity (no modification) protection.
Examples: Secret and private keys, passwords, temporary tokens, and derived temporary 
quantities whose disclosure would compromise the security of the cryptographic system.

Public Security Parameters (PSPs) do not need confidentiality but need Integrity. 
Examples: A public key needs to be handled in a way that prevents it from being changed 
or replaced. A digital signature or ciphertext is usually a PSP, not a CSP. Any component 
variable of a secret key that can be easily derived from the public key is a PSP.

Sensitive Security Parameters (SSPs): Together, CSPs and PSPs constitute SSPs.
Examples: Most inputs and outputs of a cryptographic module are SSPs. A public-private 
key pair is an SSP. FIPS Zeroization requirements apply to all SSPs, including PSPs.)

6



© 2022 PQShield Ltd. PUBLIC

What needs to be protected?
Only CSPs are in Scope of non-invasive (and need masking) 

Section 7.8 of ISO/IEC 19790:2012(E), unmodified in ISO/IEC WD 19790:2022(E): 

``Non-invasive attacks attempt to compromise a cryptographic module by acquiring 
knowledge of the module’s CSPs without physically modifying or invading the module. 
Modules may implement various techniques to mitigate against these types of attacks.’’

- Only leakage of CSPs is relevant for FIPS 140-3. Public key leakage is a false positive.

- For us, this CSP is primarily information that (1) can be used to determine a shared 
secret in a key establishment scheme or (2) forge a signature in a signature scheme.

- Invasive physical attacks (that modify the state) are out of scope for ISO 17825. FIPS 
140-3 has “fault induction mitigation” at Level 4. Faults are a part of CC assessments.

7



© 2022 PQShield Ltd. PUBLIC

Outline
Post-Quantum Crypto Security Engineering & Validation

Note: This is a large slideset; I will be be skimming over some parts.

1. Motivation: NIST PQC and “Non-Invasive” in FIPS 140-3.

2. CRYSTALS-Kyber: Key Establishment.

3. CRYSTALS-Dilithium: Signatures.

4. ISO 17825 / “FIPS 140-3” TVLA in Side-Channel Testing of PQC.

8



© 2022 PQShield Ltd. PUBLIC

CRYSTALS-Kyber
NIST’s Preferred PQC Key-Establishment Scheme

“The public-key encryption and key-establishment algorithm that will be standardized 
is CRYSTALS–KYBER.” – NIST IR 8413, July 2022

- Designed by a team of academic, industry researchers (mainly in Europe). Building 
on ~25 years of research.

Kyber is a Quantum-secure counterpart to NIST SP 800-56A/B, Pairwise Key- 
Establishment. Bulk data encryption is with symmetric crypto (AES / AEADs).

- Establishing shared session keys in security protocols (TLS, IPSec, ..).

- Establishing confidentiality and integrity keys for secure messaging / e-mail.

9



© 2022 PQShield Ltd. PUBLIC

Kyber: Basic Facts
A drop-in replacement to ECDH, RSA Encryption.. Almost

- A Key Establishment Mechanism (KEM). Can be used to replace Key 
Exchange ([Elliptic Curve] Diffie-Hellman), Public-Key Encryption (RSA).

- Significantly faster ( than ECDH / NIST-P256, P384 ) on common CPUs.

- Sizes below are in bytes. ~3x larger than RSA, 25x larger than ECDH.

Parameters PQ Cat Ciphertext Public Key Secret Key

Kyber-512 1 (128) 768 800 (1632)

Kyber-768 3 (192) 1088 1184 (2400)

Kyber-1024 5 (256) 1568 1568 (3168)

10



© 2022 PQShield Ltd. PUBLIC

( CT, SS ) = Kyber.CCAKEM.Enc( PK ):

1. seed ← random 32 bytes // Seed: Unique every time.

2. M ← SHA3-256( seed )   // Hash it, “just to be sure..”

3. ( K, R ) ← SHA3-512( M ǁ SHA3-256( PK ) ) // Shared secret K and seed R.

4. CT ← Kyber.CPAPKE.Enc( PK, M, R ) // Encrypt to create ciphertext.

5. SS ← SHAKE-256( K ǁ SHA3-256( CT ) ) // Shared Secret (256 bits).

- CSP variables are marked in RED. Ciphertext CT is public, session key SS secret, etc..

The wrapper is known as the “Fujisaki-Okamoto Transform.” It is essential to protect 
against Chosen Ciphertext Attacks (CCA) if the secret key is fixed (not ephemeral). 

Kyber Encapsulation (“Alice”)
Encapsulation wraps Encryption inside a *a lot of* hashing

11



© 2022 PQShield Ltd. PUBLIC

SS  = Kyber.CCAKEM.Dec( CT, SK ):

1-4. ( S, PK, h, Z ) ← SK // Decode secret key.

4. M’ ← Kyber.CPAPKE.Dec( S, CT ) // Encrypt to create ciphertext.

5. ( K’,R’ )← SHA3-512( M’ ǁ SHA3-256( PK ) ) // Hash of PK is cached in “h.”

6. CT’ ← Kyber.CPAPKE.Enc( PK, M’, R’ ) // Simulated encryption.
7. If CT ≠ CT’ then: // If re-encryption different,
10. | K’ ← Z // .. replace key with a “fake.”

12. SS’ ← SHAKE-256( K’ ǁ SHA3-256( CT ) ) // Shared Secret.

If CT is valid, one can get SS’ without steps 6-10 – and perhaps make the decapsulation 
twice as fast – but this won’t be secure against (adaptive) CCA attacks. Known Attacks!

Kyber Decapsulation (“Bob”)
Decapsulation wraps & tests Decryption. Pretends to never fail!

12



© 2022 PQShield Ltd. PUBLIC

Kyber: TLS 1.3 Integration
New IETF Internet Drafts Underway 

Initial support in cloud, browsers, handsets will probably be a Kyber + ECDH 
hybrid key exchange in TLS 1.3 – to deter “record now, decrypt later” attacks. 

● P. Schwabe, B. Westerbaan: “Kyber Post-Quantum KEM.”
https://datatracker.ietf.org/doc/html/draft-cfrg-schwabe-kyber

● D. Stebila, S. Fluhrer, S. Gueron: “Hybrid key exchange in TLS 1.3.”
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design

Currently proposes four hybrids for TLS 1.3 key exchange: x25519+kyber768, 
secp384r1 + kyber768, x25519 + kyber512, secp256r1 + kyber512.

13

https://datatracker.ietf.org/doc/html/draft-cfrg-schwabe-kyber
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design


© 2022 PQShield Ltd. PUBLIC

[DEEP] Kyber Algorithm Parameters

- Coefficients / elements are mod prime q = 3329 = 28 ·13 + 1, fitting 12 bits.
- Structured lattice polynomial rings are R = ℤ

N
 [x]/(xn + 1) with degree n=256.

- Polynomial multiplication is via (negacyclic) Number Theoretic Transforms (NTT).
- Also module. Rank is denoted by k in Kyber. Lattice dimension is k × n.
- In Learning With Errors (LWE) the “error” that that makes the inverse problem hard is 

explicitly added from a distribution. Bit shifting parameters d
u
,d

v
 are for compression.

- Uses both uniform distribution and the Centered Binomial Distribution (CBD) with 
parameter η

1
,η

2
 ∈ { 2, 3 }. The numbers are -η ≤ x ≤ +η from a pop count of 2η bits.

Parameter Set Rank η
1

η
2

d
u

d
v

Failure Classic Quantum
Cat 1: “Kyber512” k=2 3 2 10 4 2-139 2118 2107

Cat 3: “Kyber768” k=3 2 2 10 4 2-164 2183 2166

Cat 5: “Kyber1024” k=4 2 2 11 5 2-174 2256 2232

A Module-LWE Based KEM - Popular Successor to NewHope

14



© 2022 PQShield Ltd. PUBLIC

- Kyber uses k ∈ { 2, 3, 4 } rings R
q
 = ℤ

q
 [x]/(xn + 1) with degree n=256 and q=3329.

- Multiplication is implemented via Number-Theoretic Transform (NTT), which is 
analogous to FFT but uses n:th roots of unity 𝜁n = 1 (“zetas”) in the finite field GF(q) 
a.k.a. ℤ

q
 instead of FFT’s ⍵n = 1 in complex field ℂ. Generator used is 𝜁1=17.

- Kyber uses NTT-domain values “on the wire”, so representation must be the same!

- As with FFT, A*B = NTT-1( NTT(A)◦NTT(B) ). NTT multiplication is O(n log
2
 n), traditional 

is O(n2). In Kyber the “◦ basecase” op is with pairs of coefficients, not point-by-point. 

- Normal FFT/NTT would allow wrap-around convolution (mod xn - 1), but to do xn + 1 
with length-n NTT we need Nussbaumer’s negacyclic transform a.k.a. “tweaks”.

[DEEP] Kyber’s Polynomial Ring
Summary: Your big integer unit is useless. SIMD rules.

15



© 2022 PQShield Ltd. PUBLIC

1. ρ, σ ← 256 random bits // Public and secret seed values.

4. Â ← gen(ρ)   // Public value Â is derived from ρ.
“Â” is a k × k matrix of vectors/polynomials. Computed on the fly from ρ and (i, j) as 
inputs SHAKE-128. XOF output filtered with rejection sampling to be uniform mod q.
As it is uniform, it can be directly interpreted to be uniform in the NTT domain too.

9. s ← CBD( η
1
, σ, 0,1,..k-1 ) // Weights of 2×η

1
 from SHAKE-256 output.

13. e ← CBD( η
1
, σ, k,..,2k-1 ) // Error the same, last parameter is a counter.

Both s and e consist of k polynomials, each of k*n coefficients in -η
1
 ≤ x ≤ +η

1
.

17. ŝ ← NTT( s ),  ê ← NTT( e ) // Transform both the secret key and error.

19.  t̂ ← Â ◦ ŝ + ê // Public key t̂ = NTT( A · s + e ) – in NTT domain.
20. return PK =  ( t̂, ρ ),  S = ŝ

[DEEP] CPA Kyber Keypair Generation
Algorithm “KYBER.CPAPKE.KeyGen”

16



© 2022 PQShield Ltd. PUBLIC

The serialization methods mostly involve bit field packing (ignoring those for now)

Kyber also does lossy scaling to 1 (“message”) and d
u
, d

v bits
bits: d  ∈ { 1, 4, 5, 10, 11 }.

Compress
q
: Scales a number from mod-q range [0, q-1] to d-bit range [0, 2d-1].

Compress
q
(x, d) = ⌈ (2d / q ) · x ) ⌋  mod  2d.

Decompress
q
: Scales a number from d-bit range [0, 2d-1] to mod-q range [0, q-1].

Decompress
q
(x, d) = ⌈ ( q / 2d ) · x ) ⌋.

Note: ⌈x⌋ = floor( x + ½ ) is rounding to closest integer, with ties rounded up.

[DEEP] Kyber’s “Compression”
A little bit cumbersome bit-dropping optimization 

17



© 2022 PQShield Ltd. PUBLIC

CT = Kyber.CPAPKE.Enc( PK, M, R ):

1. ( t̂, ρ ) ← PK // Deserialize  t̂ and ρ from the public key.

4. Â ← gen(ρ)   // (Actually compute Â on the fly from seed ρ.)

9. r ← CBD( η
1
, R, 0,1,..k-1 ) // Weights of 2×η

1
 segments of SHAKE-256 output.

13. e
1

← CBD( η
2
, R, k,..,2k-1 ) // Error 1 is the same, but uses distribution η

2
.

17. e
2

← CBD( η
2
, R, 2k ) // Error 2 is a single (n=256) ring element.

18. r̂ ← NTT( r ) // Transform ephemeral secret.

19. u ← NTT-1( ÂT ◦ r̂ ) + e
1

// First part of ciphertext: u = AT · r + e
1
.

20. m ← Decompress
q
(M, 1) // “One time pad” bits as { 0, ceil(q/2) }.

v ← NTT-1( t̂T ◦ r̂ ) + e
2
+ m // Second, shorter part of ciphertext: tT · r + e

2
 + m.

21. return CT = ( Compress
q
(u, d

u
), Compress

q
(v, d

v
) )

[DEEP] Kyber Encryption (CPA)
A subroutine for both Encapsulation and Decapsulation

18



© 2022 PQShield Ltd. PUBLIC

[DEEP] Kyber Decryption (CPA)
CPA Decryption is just a subroutine for CCA Decapsulation

M = Kyber.CPAPKE.Dec( CT, S ):

0. (CT
u
, CT

u
) ← CT // Split the ciphertext into u and v halves.

1. u ← Decompress
q
(CT

u
, d

u
) // Scale coefficients of u from d

u 
bits to [0, q-1].

2. v ← Decompress
q
(CT

v
, d

v
) // Scale coefficients of v from d

v 
bits to [0, q-1].

3. s ← S // Load (and remask) the secret key.

4. m ← v - NTT-1( ŝT ◦ NTT(u)) // NTT arithmetic for: m = v - sT · u.

5. return M = Compress
q
(m, 1) // Extract message M ∈ {0,1}256  from high part.

Why does it work? 🤔  Let’s substitute and the expand equation (ignoring transpositions):
Public key: PK = t = A · s + e.  Ciphertext: CT=(u, v), u = A · r + e

1
, v = t · r + e

2
 + m.

Decryption: v - s · u =  ( A · s · r ) - ( A · s · r ) + ( e · r ) + e
1
+ e

2 
+ m  ≈  m + “small” values!

19



© 2022 PQShield Ltd. PUBLIC

Outline
Post-Quantum Crypto Security Engineering & Validation

Note: This is a large slideset; I will be be skimming over some parts.

1. Motivation: NIST PQC and “Non-Invasive” in FIPS 140-3.

2. CRYSTALS-Kyber: Key Establishment.

3. CRYSTALS-Dilithium: Signatures.

4. ISO 17825 / “FIPS 140-3” TVLA in Side-Channel Testing of PQC.

20



© 2022 PQShield Ltd. PUBLIC

CRYSTALS-Dilithium
NIST’s Preferred PQC Signature Scheme

“While there are multiple signature algorithms selected, NIST recommends 
CRYSTALS-Dilithium as the primary algorithm to be implemented.” 

– NIST IR 8413, July 2022

- From academics + industry, building on about 25 years of research.

- Quantum-secure counterpart for FIPS 186-4, Digital Signature Standard (RSA, 
ECDSA). High-security variants expected to be chosen for NSS.

- Main use cases: PKI certificates / message authentication and end-point 
authentication (TLS, IPSec). IETF specs and interoperability testing needed.

21



© 2022 PQShield Ltd. PUBLIC

Dilithium: Basic Facts
A drop-in replacement to ECDSA, RSA Signatures.. Almost

- Signs message M with a “hash prefix”: H
2
( H

1
(PK) ǁ M ). 

- Generally faster than ECDSA (NIST-P256, P384) on common CPUs.

- Sizes below are in bytes: Signatures are about 10x larger than RSA.

PQ Security Signature Public Key (Secret Key)

Dilithium2 2420 1312 (2528)

Dilithium3 3293 1952 (4000)

Dilithium5 4595 2592 (4964)

22



© 2022 PQShield Ltd. PUBLIC

Dilithium Versions (pre-standard danger!)
We’re talking about Version 3.1. Three Security Levels 2, 3, 5.

- Parameter sets Dilithium2, Dilithium3, and Dilithium5 correspond to security 
levels of SHA-256, AES-192, and AES-256 against quantum adversaries (no “1”!). 

- A potential security issue in the the third-round submission (3.0) was noted by 
NIST and fixed by the Dilithium team for version 3.1 in February 2021. This 
change impacts the key sizes slightly and breaks (KAT) compatibility.

- As of 2022-Sep-01, the version on NIST web site does not have this fix.

Get the latest spec: https://pq-crystals.org/dilithium/resources.shtml
Reference code / KATs: https://github.com/pq-crystals/dilithium

23

https://pq-crystals.org/dilithium/resources.shtml
https://github.com/pq-crystals/dilithium


© 2022 PQShield Ltd. PUBLIC

Dilithium Signatures & Real Time Systems

- The norms checks check that the problem is “hard enough”, that there is no 
accidental leakage, and that the signature fits into the fixed-length format.

- Each one of the iterations is an independent “Bernoulli trial” (of a random y) 
with probability p of passing; passing in n iterations (or less) is 1 - (1-p)n.

- There is technically no upper bound and the signature time is not Gaussian.

Bernoulli trials: Technically no upper bound

Rep 1 2 3 4 5 10 15

Dilithium 2 23.4% 41.3% 55.0% 65.6% 73.6% 93.0% 98.2%

Dilithium 3 19.9% 35.9% 48.6% 58.9% 67.0% 89.1% 96.4%

Dilithium 4 26.4% 45.8% 60.0% 70.6% 78.3% 95.3% 99.0%

24



© 2022 PQShield Ltd. PUBLIC

Dilithium: Upper-bounding Signature Time
Determine two implementation characteristics C1 and C2

Both the set-up time C1 and per-iteration latency C2 have relatively low variance. 

Latency: t = C1 + n * C2.

The per-iteration success probability p depends the Dilithium algorithm itself:

p ∈ { 0.23, 0.20, 0.26 }  at security levels 2, 3, and 5, respectively.

The probability of success before t < C1+C2 is zero (you need at least 1 iteration.)

Iterations at time t: n = ⌊ ( t - c1 ) / c2 ⌋. Success rate after n: 1 - (1 - p)n.

25



© 2022 PQShield Ltd. PUBLIC

Dilithium2 Latency vs Success % (example)

26



© 2022 PQShield Ltd. PUBLIC

Dilithium: PKI Integration
Work going on in IETF LAMPS WG and some other places

J. Massimo, P. Kampanakis, S. Turner, B. Westerbaan. “Algorithms and Identifiers 
for Post-Quantum Algorithms in the Internet X.509 Public Key Infrastructure.”
https://datatracker.ietf.org/doc/draft-massimo-lamps-pq-sig-certificates/

One may want to transition via a hybrid solution. There are two main hybridization 
proposals, offering different trade-offs in system integration complexity:

- Composite: Combine a classical (ECDSA) and PQC signature of the same data 
into a single hybrid signature. Both signatures need to check as valid.

- Non-composite (NSA): Effectively two independent certificate chains, PKIs.

27

https://datatracker.ietf.org/doc/draft-massimo-lamps-pq-sig-certificates/


© 2022 PQShield Ltd. PUBLIC

- Coefficients / elements work in ℤ
q
 with q = 8380417 = 223 - 213 + 1 fitting a 23 bits.

- Ring again is of type R
q
 = ℤ

q
 [x]/(xn + 1) with n=256. NTT arithmetic is used.

- A has two dimensions: k and l, so the total dimension is  k × l × n.
- Public key compression (bit dropping): d = 13 bits.
- Challenge distribution has τ non-zero ±1 coefficients and (n-τ) zero coefficients.
- The secret key distribution is uniform but in very short range [-η, +η].
- Uniform y sampling range [-γ

1
, +γ

1
] and low-order rounding range is [-γ

2
, +γ

2
].

- Furthermore we have rejection bounds β (for signature) and ⍵ (for carry hint h).

Parameter Set (k, l) τ η γ
1

(q-1)/γ
2

β ⍵ Reps Classic Quant
Dilithium 2: (4, 4) 39 2 217 88 78 88 4.3 2123 2112

Dilithium 3: (6, 5) 49 4 219 32 196 55 5.1 2182 2165

Dilithium 5: (8, 7) 60 2 219 32 120 75 4.0 2252 2229

[DEEP] Dilithium Algorithm Parameters
A Signature Algorithm based on MLWE and SIS

28



© 2022 PQShield Ltd. PUBLIC

02. ρ, ρ’, K ← random or H(Seed) // Public and secret seed values.
03. Â ← ExpandA(ρ)   // Public Â has size k × l × R

q
 , derived from ρ.

04. s
1

← ExpandS(ρ’, 0,2,..,l-1) // Secret s
1
 has size l × R

q
, distribution [-η, +η].

s
2

← ExpandS(ρ’, l, ..,l+k-1) // Secret s
2
 has size k × R

q
, distribution [-η, +η].

05. t ← A · s
1
 + s

2
// All of t is secure. A · s

1 
= NTT-1(Â◦NTT( s

1
)).

06. (t
1
, t

0
) ← Power2Round( t, d ) // Split t; t

1 
high 13 bits,

 
t

0 
low 10 bits.

07. tr ← H( ρ, t
1 

) // tr = SHAKE256(PK).
08. return PK = ( ρ, t

1
 ),  SK = ( ρ, K, tr, s

1
, s

2
, t

0 
)

- The actual secret key is just ( s
1
, s

2
 ). The K variable is only used in non-randomized 

signing (where the same message and SK always give the same sig.)
- Note that ExpandS(ρ’) deterministic sampling is only useful in testing. If one can get 

uniform [-η, +η] numbers (basically ℤ
5
 and ℤ

9
) directly in shares, this is better.

[DEEP] Dilithium Keypair Generation
Simplest and Fastest Operation in Dilithium

29



© 2022 PQShield Ltd. PUBLIC

09. Â ← ExpandA(ρ)   // A has size k × l × R
q
 , derived from ρ.

10. μ ← H( tr || M )   // 512-bit message hash with H(PK) prefix.
11. κ ← 0,  (z, h)  ← ⊥ // Iteration counter κ, Iteration result.
12. ρ’ ← random [ or H( K, μ ) ] // [ Use hash in deterministic signing. ]
13. while (z, h) = ⊥ do: // — REJECTION LOOP —
14. | y ← ExpandMask( ρ’, κ.. ) // y is l × R

q
 sampled from [-γ

1
, +γ

1
].

15. | w ← A*y // Compute as w = NTT-1(Â◦NTT( y )).
16. | w

1
← HighBits

q
( w, 2γ

2
) // w

1
 range is (q-1)/2γ

2
 so [0,15] or [0,43].

17. | ɕ ← H( μ, w
1 

) // ɕ is derived from message and public key.
18. | c ← SampleInBall(ɕ) // c is in R

q
, has τ non-zero (±1) coefficients.

19. | z ← y + c*s
1

// It’s better to store NTT(s
1
) – as shares.

 That’s the arithmetic for ɕ and z. We must reject them and “goto 14” if some checks fail..  

[DEEP] Dilithium Signature Generation (1 of 2)
Create a randomized “challenge” based on the message 

30



© 2022 PQShield Ltd. PUBLIC

[DEEP] Dilithium Signature Generation (2 of 2)

20. | r
0

← LowBits( w - c*s
2
, 2γ

2
) // Range is basically ±2γ

2
21. | if  MaxAbs(z) ≥ γ

1
-β  or  MaxAbs(r

0
) ≥ γ

2
-β then:  (z, h)  ← ⊥ // reject

22. | else:
23. | h  ← MakeHint( - c * t

0
 , w - c*s

2
 - c * t

0
, 2γ

2
) // h ∈ {0,1}kN

24. | if  MaxAbs(c * t
0
) > γ

2 
or CountOnes(h) > ⍵ then:  (z, h)  ← ⊥ // reject

25. | κ ← κ + l // For creating fresh y in next iteration
end while

26. return Sig = ( ɕ, z, h ) // no longer secret

- Protecting just the  ( s
1
, s

2
 ) secret itself via masking is easy; NTT in shares. 

- Leaking the one-time secret y also breaks things; use masked arithmetic.
- MaxAbs and SampleInBall are very tricky to implement in masked format.
- The protected variables become non-secret (signature) after passing the check. 

Based on “Fiat-Shamir with Aborts” - Rejection Iteration

31



© 2022 PQShield Ltd. PUBLIC

{ T, F } = Verify( Sig, M, PK ):

( ɕ, z, h ) ← Sig // Deserialize signature.
( ρ, t

1
 ) ← PK // Deserialize public key.

27. Â ← ExpandA(ρ) // “Lattice” in NTT transformed domain.
28. μ ← H( H(PK), M )   // Prefix the message hash with H(PK).
29. c ← SampleInBall(ɕ) // Hash to τ non-zero (±1) coefficients.
30. w’

1
← UseHint

q
( h, A*z  - c*t

1
 · 2d, 2γ

2 
) // Hint helps make w’

1
 exactly matching.

31. if   MaxAbs( z ) <  γ
1
-β  and  ɕ = H( μ || w’

1
)  and  CountOnes(h) ≤ ⍵  then:

| return T  👍 “Good signature”
else:
| return F  👎 “Fail!”

[DEEP] Dilithium Signature Verification
For completeness – Luckily doesn’t involve secrets

32



© 2022 PQShield Ltd. PUBLIC

Outline
Post-Quantum Crypto Security Engineering & Validation

Note: This is a large slideset; I will be be skimming over some parts.

1. Motivation: NIST PQC and “Non-Invasive” in FIPS 140-3.

2. CRYSTALS-Kyber: Key Establishment.

3. CRYSTALS-Dilithium: Signatures.

4. ISO 17825 / “FIPS 140-3” TVLA in Side-Channel Testing of PQC.

33



© 2022 PQShield Ltd. PUBLIC

FIPS 140-3 Non-Invasive Security
Also Known as Side-Channel Testing 

Introduced as a major change in FIPS 140-3 in relation to FIPS 140-2:

- Side-Channel Attacks (Power, Emissions, Timing) are in 140-3 scope. 
- Documentation required for Levels 1 and 2. Mitigation Testing at Levels 3 and 4.

But how?

- Initially (when FIPS 140-3 started): not tested (only “if claimed by a vendor”.)
- Annex F of ISO 19790:2012 had no test metrics, but the draft SP 800-140F Rev 1 

had ISO 17825, “Testing methods for mitigation of non-invasive attack classes.”
- Updated Annex F of ISO 19790:2022 will reference ISO 17825 directly.

34



© 2022 PQShield Ltd. PUBLIC

Complicated? “Non-Invasive” and FIPS 140-3

35



© 2022 PQShield Ltd. PUBLIC

Non-Invasive and Post-Quantum

ISO/IEC WD 17825:2021(E) is based on Test Vector Leakage Assessment (“TVLA.”)  
It does not try measure the difficulty of attack (like CC AVA_VAN); just detect leakage.

The standard text starts out with: The test approach employed in this International 
Standard is an efficient “push-button” approach: the tests are technically sound, 
repeatable and have moderate costs. [!]

Reality:

- That’s for testing labs ~2025. A well-defined “push-button” does really exist yet.

- However, one of the things already vendors use internally for sign-off assurance.

“Testing methods for the mitigation of non-invasive attack classes”

36



© 2022 PQShield Ltd. PUBLIC

ISO 17825 Leakage Analysis Scenario
DPA and DEMA: Power and Electromagnetic Emission Traces

- Standard attack setting: Tester can set inputs to the module at the IO boundary 
(API). Can choose inputs and synchronize to the start of the operation.

- Oscilloscope measures power (or electromagnetic emissions) at high precision, 
perhaps a couple samples per clock cycle. Measurement vectors are “traces”. 

- Traces are analyzed to detect leakage. In leakage analysis the analyst can know 
or choose keys: Is looking for correlations between keys and and the traces.

- Statistical analysis of significance. PASS/FAIL metric (no key recovery).

37



© 2022 PQShield Ltd. PUBLIC

Side Channels: FPGA Leakage Emulation
ISO/IEC 17825 & 20085 - PQC Side-Channel Tests  

👈 We use FPGA to emulate leakage 
of hardware post-quantum crypto 
modules. Try to apply ISO 17825.

👇CW305 “artefact” as discussed in 
Annex C of ISO/IEC 20085-2:2020(E).

38



© 2022 PQShield Ltd. PUBLIC

- Masking splits secrets into “shares.” Successful measurement of an individual share 
does not leak the secret itself. “Masking Gadgets” used to perform arithmetic steps.

Type: Relationship:  Algebraic object:
A/Q: X = X0 + X1  (mod q) Prime q is 3329 (Kyber) or 8380417 (Dilithium).
A/N: X = X0 + X1  (mod 2N) Size N is 16 or smaller (NTRU 11..14, Saber 14).
B: X = X0 ⊕ X1   Bit strings (managed e.g. as 64-bit words).

- Most cryptographers agree: Masking and other attack mitigation techniques for PQC 
algorithms are technically more complex than for older cryptography.

- Why? The algorithms are not homogenous like RSA or ECC but contain a number of 
dissimilar steps. One may have to design a dozen different gadgets for one algorithm.

What are the “non-invasive mitigations” like?
Expect masking + ad hoc countermeasures

39



© 2022 PQShield Ltd. PUBLIC

The main countermeasure: Masking
Limit leakage by breaking computation into randomized shares 

40



© 2022 PQShield Ltd. PUBLIC

Basic SCA Tests for Post-Quantum Crypto

- ISO 17825 has a “general statistical test procedure.” 

- The current version of these tests create data subsets A and 
B of measurements (e.g., trace waveforms) with the IUT. 

- But the trace sets A and B need input test vectors!

- Example: Set A may use a fixed bit value in a CSP, while 
measurements in set B use random CSP values. 

- If the A/B measurement sets can be distinguished from each 
other – with the Welch t-test with high enough statistical 
confidence – this is taken as evidence of CSP leakage.

Detects “leakage” – no key recovery (easily False Positives)

41



© 2022 PQShield Ltd. PUBLIC

Simple math: Non-specific (Welch) t-test

- Subsets A and B are trigger - synchronized. Has sub-cycle precision (under 1ns).
- For each time sample, compute averages ( μ

A
, μ

B
) and standard deviations ( σ

A
, σ

B
).

- t-statistic relates to the certainty that the two sets are distinguishable.
- Confidence “probability” assumes Gaussians distribution (here normalized by 1/√N).

Leakage is assumed when A and B don’t have the same mean

42



© 2022 PQShield Ltd. PUBLIC

ISO 17825 “General Statistical Test Procedure”

43



© 2022 PQShield Ltd. PUBLIC

External API Interfaces for SCA testing
Using handles: Testing just the core private key operation

Tester: Create inputs (load test vectors or compute them).
↓

key_handle = key_import(): Deserializes CSPs into module’s internal memory layout.
↓

↓
ss_tv = key_export( ss_handle ): Collapse shares and extract results from memory.

↓
Tester: Verify results, store measurement.

—————— Trigger Measurement Start.——————

 ss_handle = decaps( ct, key_handle )

—————— Trigger Measurement End. ——————

44



© 2022 PQShield Ltd. PUBLIC

Also test secure CSP import and export
ISO 17825 Requires testing at “Module I/O Boundary.”

Using secure import (and export for keygen, encaps, decaps)

Tester: Create inputs (load test vectors or compute them).
↓

↓
Tester: Verify results, store measurement.

—————— Trigger Measurement Start.——————

signed = sign( wrapped_key,  msg ): 

handle = key_import( wrapped_key ): Deserialize CSPs.
signed = sign( handle, msg ): Private key operation.

—————— Trigger Measurement End. ——————

45



© 2022 PQShield Ltd. PUBLIC

Goals of Automatic TVLA “Sign-Off”
Leakage tests should aim for widest possible coverage

1. Try to have specific testing coverage over all CSPs in all relevant sub-algorithms.

( Key Generation, Key Export, Import, Encapsulation, Decapsulation, Signature. )

2. Design the experiments and test vectors (input data) in a way that eliminates
false positives to greatest extent possible.

( Hopefully no need to specify “areas of interest” in resulting traces. )

Opinion: Industry will need to agree on a standardized set of test vectors in order to 
have consistent results. These are dependant on details of each algorithm.

46



© 2022 PQShield Ltd. PUBLIC

Two basic types of test vectors will get you far
Fixed vs Random (FIX) and A/B Classification (ABC)

1. Fixed vs Random (non-specific t-test) can be used in “live” testing:
- Trace set A: Fixed CSP for every trace. 
- Trace set B: New random CSP secret for each trace.

2. A/B Categorization works with capture-then-analyze flow:
- Records traces with detailed test vector metadata; CSPs are known in analysis.
- Traces are categorized after capture to A and B sets based on CSP selection criteria, 

Examples: a specific internal CSP variable or secret key bit, “plaintext checking” bit.
- The same trace data can be categorized to A and B in a number of different ways.

In both cases: Set A and Set B statistically differentiable with t-test = FAIL.

47



© 2022 PQShield Ltd. PUBLIC

Example 1: Fixed-vs-Random

M = Kyber.CPAPKE.Dec( CT, S ):

0-2. (u, v) ← (decode) CT // Decode u and v from ciphertext.
3. ŝT ← (decode) S // Decode (and refresh) secret key. 
4. m ← v - NTT-1( ŝT ◦ NTT(u)) // NTT arithmetic for: m = v - sT · u.

5. return M = Compress
q
(m, 1) // Extract the “signs” as M ∈ {0,1}256.

Subset A: Fixed secret key S but a fresh ciphertext CT for every trace.

Subset B: Random ( S, CT ) generated for each decryption trace.

If one can statistically distinguish A from B, then there is probably leakage from S.

Fixed-vs-Random on Secret Key on Kyber Decrypt

48



© 2022 PQShield Ltd. PUBLIC

CSP: Actual Kyber (CCA KEM) Private Key

Recall that ISO 17825 tests are done at the “Module I/O” boundary, i.e. with CCA:

CCA: CT = ( Encode(c_m) ǁ Encode(b’) )
PK = ( Encode( t ) ǁ ρ )
SK = ( Encode( s ) ǁ Encode( t ) ǁ ρ ǁ Hash( PK ) ǁ z )

The CCA secret key contains the public key too – because of re-encryption!

- If we just pick a random SK (cca), then we’ will getting irrelevant leakage indications 
(false positives) from the public parameters, as those are not masked at all.

- False positives are similar to “leaking” public modulus n in RSA, or public point in ECC.

More complex because of Fujisaki-Okamoto Transform

49



© 2022 PQShield Ltd. PUBLIC

Test Vector Creation

Standard format PQC secret keys are complex mixtures of secret and public information: 

- Kyber (CCA) SK = ( Encode( s ) ǁ Encode( t ) ǁ ρ ǁ Hash( PK ) ǁ z )

- Dilithium SK = ( ρ ǁ K ǁ Hash(ρ, t
1
) ǁ Encode(s

1
) ǁ Encode(s

2
) ǁ t

0 
)

Avoiding false positives from non-CSPs; we’d want to keep the public ( ρ or seed_A ) 
values static and only manipulate private polynomial s. This is analogous to keeping the 
“curve” constant with elliptic curves and just looking for leakage in the scalars.

As with RSA and ECC, the procedure for high-level test vector generation depends on the 
algorithm structure. We’re proposing test vectors that “activate” CSP components only.

For all lattice schemes – Signature and CCA KEM

50



© 2022 PQShield Ltd. PUBLIC

Example 2: Plaintext Checking Oracle
Re-encrypt & check in Fujisaki-Okamoto is Extremely Fragile

CCA.Decaps(CT, SK):
0. (H(PK), Z, S) ← SK
1. M’ ← CPA.Decrypt( S, CT )
2. ( K’, R’ ) ← H( M’, H(PK) )
3. CT’← CPA.Encrypt(PK, M’, R’)
4. if CT == CT’ then:

5. | SS’ ← H( K’, H(CT) )
6. else:
7. | SS’ ← H( Z, H(CT) )
8. return SS’

- A Plaintext Checking (PC) oracle leaks 
information about the M == M’ comparison.

- Leakage from steps 2-4 can do that.
- The PC oracle bit can be used to efficiently 

break Kyber (extract S) in adaptive attack.

Even though test vectors are not adaptive, we test 
indirectly for PC oracle in Decapsulation e.g. by 
mismatching secret key with ciphertext in Set B. 

Subset A: CT = CT’.   (“Valid ciphertext.”)

Subset B: CT ≠ CT’. (“Invalid ciphertext.”)

51



© 2022 PQShield Ltd. PUBLIC

ISO 17825 for NIST PQC: Conclusions
- ISO 17825 / TVLA leakage tests are useful as a sign-off and positive assurance.

No key recovery, attack potential grading – has different goals from AVA_VAN.
 

- ISO 17825 being adopted FIPS 140-3 and can be used on Post-Quantum Crypto.

- Such testing should focus on coverage; aim to test all CSPs, everywhere. But 
care must be taken to avoid false positives (e.g. detection of PSP variables).

Big caveat: Do not let such testing replace security analysis in the design process!

“When a measure becomes a target, it ceases to be a good measure”. 

– Goodhart’s law (of unintended consequences.)

52


