
Think openly, build securely

RISC-V Zkt: Portable Timing Attack
Resistance (via Dynamic Taint Analysis)

Staff Cryptography Architect, PQShield Ltd.

Dr. Markku-Juhani O. Saarinen

© 2022 PQShield Ltd. PUBLIC

RISC-V Summit 2022
December 14, 2022 - San Jose

1

© 2022 PQShield Ltd. PUBLIC

> A Quarter of a Century of Timing Attacks
Some Greatest Hits (in asymmetric crypto TA) Along the Years:

● P.C. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems." (CRYPTO 1996. Target: RSAREF 2.0 running on MS-DOS.)

● D. Brumley and D. Boneh: "Remote timing attacks are practical."
(USENIX Security 2003. OpenSSL RSA remote key recovery, CVE-2003-0147.)

● B. Brumley and N. Toveri: "Remote Timing Attacks Are Still Practical."
(ESORICS 2011. OpenSSL ECDSA remote key recovery, CVE-2011-1945.)

● Q. Guo, T. Johansson. A. Nilsson, "A key-recovery timing attack on post-quantum
primitives using the Fujisaki-Okamoto transformation and its application on
FrodoKEM." (Crypto 2020, PC Oracle, demoed against a claimed const-time impl.)

 Every generation gets to learn the special implementation tricks!

2

© 2022 PQShield Ltd. PUBLIC

Basic Sources of Timing Leaks
(That are avoidable with careful programming)

1. Secret-controlled branches and loops:

if <secret> then { delay1(); } else { delay2(); }

2. Memory accesses (cache timing attacks). Can be a load or store.

ct = SBox[pt ^ key]; // observe latency with different inputs.

3. Arithmetic operations whose processing time just depends on inputs

x = y % q; // division and remainder ops are rarely constant-time.

3

© 2022 PQShield Ltd. PUBLIC

When Hiring a Crypto Dev..
Constant-time coding / algorithm knowledge is fundamental

- Transform simple conditionals into straight-line code using Boolean operations 🤔.

 x = s ? a : b; vs. x = b ^ ((-(s & 1)) & (a ^ b));

- Symmetric ciphers such as AES also affected (usually via cache attack).

- Basic techniques: Bit-slicing (entire thing as a Boolean circuit), “full scan / collect.”
An implementation that avoids S-Box lookups is slow unless there is ISA support.

- Eliminate division instructions from modular reduction (e.g. Montgomery, Barrett).

- Blinding, Montgomery ladders, special addition and doubling rules (ECC), etc..

4

© 2022 PQShield Ltd. PUBLIC

Practical Testing Methods
One trick: Repurpose “Use of Uninitialized Memory” detection.

- Mark sensitive data (such as secret keys) as uninitialized memory.

- The well-known tools Valgrind and LLVM Memory Sanitizer can be made to detect
if branches and load/store addresses are tainted with uninitialized data.

- Covers only branches and loads, not non-constant time instruction sequences.

Examples of real-life usage:
Adam Langley (Google): "Checking that functions are constant time with Valgrind."

https://www.imperialviolet.org/2010/04/01/ctgrind.html
Kris Kwiatkowski (PQShield): "Constant-time code verification with Memory Sanitizer."

https://www.amongbytes.com/post/20210709-testing-constant-time/

5

https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://www.amongbytes.com/post/20210709-testing-constant-time/

© 2022 PQShield Ltd. PUBLIC

This is “Dynamic Taint Analysis”
But has limitations for Constant-Time Checking

Classical DTA systems used special intermediate languages:

E. J. Schwartz, T. Avgerinos, and D. Brumley: "All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid
to Ask.)" IEEE S & P 2010.

CWE-733: “Compiler Optimization Removal or Modification of Security-critical Code.”

Compilers are known to modify security-critical code and you can rarely be 100% sure
which instructions are generated, or removed. Hence examination of compiled binary
executable rather than an abstract representation of the algorithm is important.

6

© 2022 PQShield Ltd. PUBLIC

RISC-V Crypto Extensions
- Scalar Crypto (and its many sub-extensions). Zkt (data-independent time) is one.

Ratified (Nov 2021). Supported in some commercial cores, compliance suites, GCC
and LLVM compilers, prominent middleware (OpenSSL).

- Vector Crypto. Roughly at “freeze.” Hope is to proceed with ratification quickly. All
vector crypto instructions are covered by Zkt (require data-independent time.)

- Non-Standard Extensions. Research hacks, proprietary Stuff has its place in RISC-V.

7

© 2022 PQShield Ltd. PUBLIC

Data Independent Execution Latency: Zkt
Ratified in November 2021 as part of Scalar Crypto Spec

- The Zkt extension attests that the machine has data-independent execution time
for a safe subset of instructions. This property is commonly called "constant-time"
although should not be taken with that literal meaning.

- Basically just a list of instructions that are “safe to use” to hande crypto secrets.

- First official “Side-Channel ISA contract” (I know of). Does not affect functional
behavior requirements. The programs still do the same things.

- Vendors do not have to implement all of the list's instructions to be Zkt compliant;
however, if they claim to have Zkt and implement any of the listed instructions, it
must have data-independent latency.

8

© 2022 PQShield Ltd. PUBLIC

Taints in our Emulation
Traditional RED and BLACK

- Taint is shadow state attached to all variables. “Variables” refers both to processor
registers and memory (including stack), and perhaps co-processor state.

- We’ll use just two taints, "RED" (secret) and "BLACK" (non-secret) here.

- In the implementation each register x1-x31 has a taint (same for all bits).
Zero register x0 is always BLACK.

- Each 32-bit word in the memory has a taint state. This is arbitrary, could be for
individual bytes. The microcontroller has a maximum of few megabytes of RAM.

9

© 2022 PQShield Ltd. PUBLIC

Taint rules: Load Instructions
Not on the Zkt list: Avoid due to cache-timing attacks.

LB rd, imm(rs1) // RISC-V is a pure “load-and store”
LH rd, imm(rs1) // .. architecture: Only these
LW rd, imm(rs1) // .. instructions can be used to
LBU rd, imm(rs1) // .. load data from memory.
LHU rd, imm(rs1)

Zkt: Not on list. Latency may depend on rs1.
Alarm: Violation if rs1 is RED.
Rule: rd inherits the taint of memory at imm(rs1).

10

© 2022 PQShield Ltd. PUBLIC

Taint rules: Store Instructions
Not on the Zkt list: Avoid due to cache-timing attacks.

SB rs2, imm(rs1) // All stores using these three.
SH rs2, imm(rs1)
SW rs2, imm(rs1)

Zkt: Not on list. Latency may depend on rs1 (or even on rs2 !)
Alarm: Violation if rs1 is RED.
Rule: Memory location imm(rs1) inherits the taint of rs2.

11

© 2022 PQShield Ltd. PUBLIC

Taint rules: Conditional Branches
Not on the Zkt list: Avoid branches due to timing leakage.

BEQ rs1, rs2, <rel addr>
BNE rs1, rs2, <rel addr>
BLT rs1, rs2, <rel addr>
BGE rs1, rs2, <rel addr>
BLTU rs1, rs2, <rel addr>
BGEU rs1, rs2, <rel addr>

Zkt: Not on list. Latency can be dependant on rs1, rs2.
Alarm: Violation if either rs1 or rs2 are RED.
Rule: - (No inheretence.)

12

© 2022 PQShield Ltd. PUBLIC

Taint rules: Indirect and Unconditional Jumps
Not on the Zkt list

JALR rd, <rel to rs1> // Indirect jump

Zkt: Not on the list. Can be dependant on address, rs1.
Alarm: Violation if rs1 is RED.
Rule: rd inherits the taint of rs1.

JAL rd, <rel addr> // Unconditional jump

Zkt: Not on the list. Latency can depend on the address.
Rule: rd is set to BLACK (this can be debated).

13

© 2022 PQShield Ltd. PUBLIC

Taint rules: Division
Not on the Zkt list: Crypto code avoids division instructions.

DIV rd, rs1, rs2 // Division
DIVU rd, rs1, rs2
REM rd, rs1, rs2 // Remainder
REMU rd, rs1, rs2

Zkt: Not on the list. Latency can be dependant on rs1, rs2.
Alarm: Violation if either rs1 or rs2 is RED.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

14

© 2022 PQShield Ltd. PUBLIC

Taint rules: Multiplication
On the Zkt list: Needs to be “constant time.”

MUL rd, rs1, rs2
MULH rd, rs1, rs2
MULHSU rd, rs1, rs2
MULHU rd, rs1, rs2
MULW rd, rs1, rs2

Zkt: On the Zkt list. Latency must be rs1, rs2 - independent.
Alarm: None.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

15

© 2022 PQShield Ltd. PUBLIC

Taint rules: Immediate arithmetic
On the Zkt list: Needs to be “constant time.”

ADDI[W] rd, rs1, imm // Format of instructions:

SLTI SLTIU // Immediate compare
XORI ORI ANDI // Immediate Boolean logic
SLLI[W] SRLI[W] SRAI[W] // Immediate Shifts

Zkt: On the Zkt list. Latency must be rs1 - independent.
Alarm: None.
Rule: rd inherits the taint of rs1.

16

© 2022 PQShield Ltd. PUBLIC

Taint rules: Basic “R-Type” Arithmetic
On the Zkt list: Needs to be “constant time.”

ADD[W] rd, rs1, rs2 // Format of instructions:

SUB[W] SLL[W] SLT // “R-Type” (register-register)
XOR OR AND
SLTU SRL[W] SRA[W]

Zkt: On the Zkt list. Latency must be rs1, rs2 - independent.
Alarm: None.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

17

© 2022 PQShield Ltd. PUBLIC

Taint rules: Compressed Instructions
Same selection criteria: A subset is on the Zkt list.

Compressed Loads, stores, branches are not on the list. Arithmetic is:

C.NOP C.ADDI C.ADDIW C.LUI
C.SRLI C.SRAI C.ANDI C.SUB
C.XOR C.OR C.AND C.SUBW
C.ADDW C.SLLI C.MV C.ADD

Zkt: On the Zkt list. Latency must be rs1, rs2 - independent.
Alarm: None for those on the Zkt list. Alarms as in uncompressed.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

18

© 2022 PQShield Ltd. PUBLIC

Taint rules: Symmetric Cryptography
On the Zkt list: Needs to be “constant time.”

All cryptography-specific instructions need to be constant time.

 AES32* AES64* // Scalar AES Instructions
 SHA256* SHA512* // Scalar SHA-2 Instructions
 SM3* SM4* // China Standard Cryptography

Zkt: On the Zkt list. Latency must be rs1, rs2 - independent.
Alarm: None.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

19

© 2022 PQShield Ltd. PUBLIC

Taint rules: Cryptography Subset of Bitmanip
On the Zkt list: Needs to be “constant time.”

All scalar cryptography instructions need to be constant time.

CLMUL CLMULH XPERM4 XPERM8 ROR ROL
RORI RORIW ANDN ORN XNOR PACK
PACKH PACKW BREV8 REV8 ZIP UNZIP

Zkt: On the Zkt list. Latency must be rs1, rs2 - independent.
Alarm: None.
Rule: rd inherits both taints rs1 ⋁ rs2 (red if either is red).

20

© 2022 PQShield Ltd. PUBLIC

Our DTA RISC-V Emulator Features
Originally a model used in PQC Coprocessor Co-Design Process

- The system being emulated is a “secure microcontroller” with cryptographic
peripherals. The emulation behaviorally matches certain FPGA (and ASIC!)
implementations; the same binaries can be ran on both.

- The emulator is also counts the times any PC is visited; produces profiling
information and an annotated listings of an execution.

- Executes pretty fast, tens of millions of instructions second (roughly on par with an
FPGA target running the same code).

- Instrumentation is eased with a couple of custom instructions that the emulator
understands; these allow a testbench program to set and read taints.

21

© 2022 PQShield Ltd. PUBLIC

Instrumentation Helpers
Used in testbench to mark the secret variables

Mapped into Custom-0 opcode space. Only used known to the emulator.

uint32_t xrb_paint(uint32_t x, int sc);

XRB.PAINT rd, rs1, rs2

Behavior: Sets rd = rs1.
Alarm: None.
Rule: rd taint = rs1 taint⋁ rs2 literal value.

22

© 2022 PQShield Ltd. PUBLIC

Instrumentation Helpers
Used in testbench to mark the secret variables

Mapped into Custom-0 opcode space. Only used known to the emulator.

uint32_t xrb_cover(uint32_t x, int sc);

XRB.COVER rd, rs1, rs2

Behavior: Sets rd = rs1.
Alarm: None.
Rule: rd taints = rs2 literal value. (Can be used to set to BLACK.)

23

© 2022 PQShield Ltd. PUBLIC

Instrumentation Helpers
Used in testbench to mark the secret variables

Mapped into Custom-0 opcode space. Only used known to the emulator.

int xrb_test(uint32_t x);

XRB.TEST rd, rs1

Behavior: Sets rd = rs1 taint literal value.
Alarm: Notify if rs1 is RED.
Rule: rd taint = BLACK.

24

© 2022 PQShield Ltd. PUBLIC

Example Use: Tainting Test Bench
In a test bench, taint some variables

25

© 2022 PQShield Ltd. PUBLIC

Example Use: Execute, Create Annotated Profile
Left margin has # times line was executed, CT Alarms

Here warnings are because the KAT bench as a non-constant time AES.

26

© 2022 PQShield Ltd. PUBLIC

Instrumenting around False Positives
Example: Rejection Samplers Need Special Instrumentation

Rejection samplers have roughly the pattern:

do { x = random_try(); } while (!accept(x));

Check that “x” is independently random for each try, so that the
number of iterations does not reveal information about final “x”.

- RSA Key Generation (finding primes among random candidates).
- Uniform random modulo q from random bits, non-uniform samplers.
- Dilithium Signing (has ~20% success per signature candidate).

27

© 2022 PQShield Ltd. PUBLIC

Conclusions
- The Timing Contract: The Zkt data-independent latency extension

allows portable crypto code in the RISC-V ecosystem.

- Instruction-Level Variable Tainting: We can fully trace data flows in
actual executions of high-level algorithms. Produces annotated
listings with profiling and constant-time violation information.

- Instrumentation for symmetric cryptography is fairly easy. Algorithms
that are not “literally constant time” (but still secure) require some
manual analysis for instrumentation. But this is needed only once.

28

